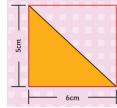
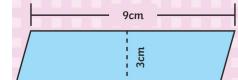


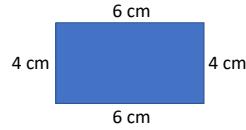
millimetres (mm) in a centimetre (cm)

centimetres (cm) in a metre (m)

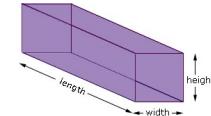
metres (m) in a kilometre (km)

grams (g) in a kilogram (kg)



millilitres (ml) in a litre (l)


1 mile = ___ kilometres

8 kilometres = _ miles


the amount of 2D space something takes up
e.g. length x width = _____ of a rectangle
e.g. base x height = _____ of a parallelogram
e.g. base x height $\div 2$ = _____ of a triangle

the distance around the outside
e.g. a rectangle with longer sides of 6 cm and shorter sides of 4 cm will have a _____ of 20 cm

the amount of 3D space something takes up
e.g. length x width x height = _____ of a cuboid

seconds in a minute

minutes in an hour

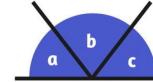
hours in a day

September, April, June and November have
__ days

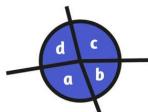
January, March, May, July, August, October
and December have __ days

February has 28 days or 29 in a ____

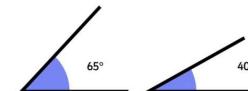
degrees in a quarter turn

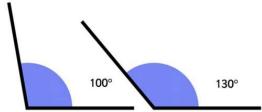

degrees in a half turn

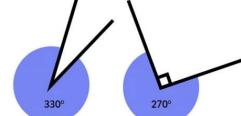
degrees in three quarters of a turn

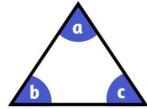

degrees in a whole turn

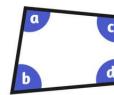
degrees in a right angle
e.g. on angle diagrams, a right angle is shown with a small square

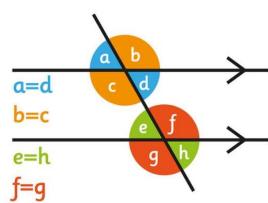

degrees on a straight line
e.g. you can find an unknown angle on a straight line by subtracting the other angle(s) from ____

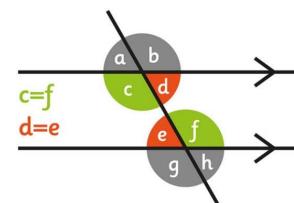

degrees around a point
e.g. you can find an unknown angle on a point by subtracting the other angle(s) from ____

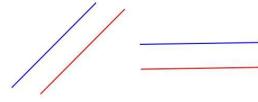

angles less than 90 degrees are ____ angles


angles greater than 90 degrees but less than 180 degrees are _____ angles


angles greater than 180 degrees are _____ angles


angles in a triangle total ____ degrees
e.g. you can find an unknown angle in a triangle by subtracting the total of the other two angles from ____

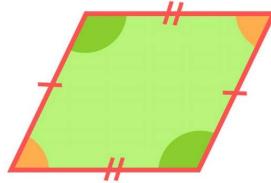

angles in a quadrilateral total ____ degrees
e.g. you can find an unknown angle in a quadrilateral by subtracting the total of the other three angles from ____


when two straight lines cross, opposite angles are ____

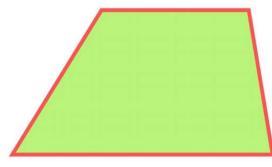

on parallel lines, alternate (Z or backwards-Z) angles are ____

lines would never cross no matter how far we extended them (like train tracks)

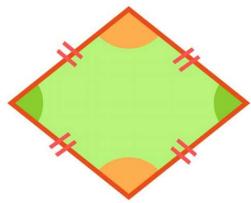
lines that cross at right angles or would cross at right angles if we extended them


a shape with four sides

a shape with five sides


a shape with six sides

a shape with eight sides


a quadrilateral which has two pairs of parallel lines is called a _____

a quadrilateral which has one pair of parallel lines is called a _____

a parallelogram with sides of the same length is called a _____

a quadrilateral with two pairs of equal sides adjacent (next) to each other is called a _____

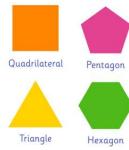
a line drawn from one vertex to the opposite vertex

These diagrams show the [redacted] of three quadrilaterals.

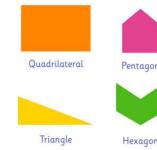
rectangle

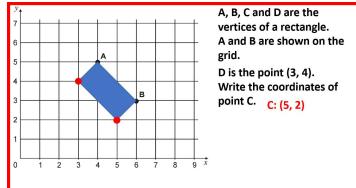
kite

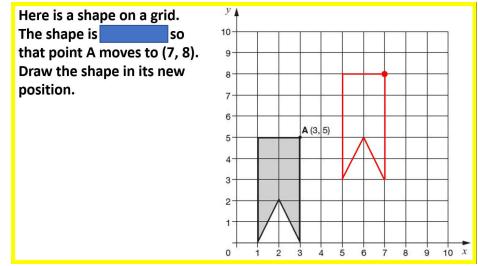
square

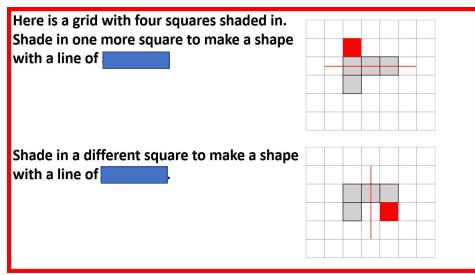

Write the names of the quadrilaterals in the boxes.

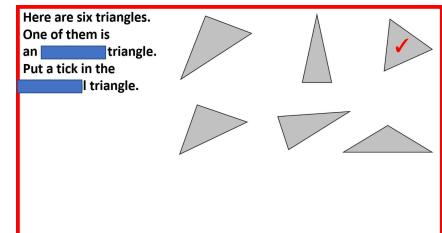
rectangle
kite
square

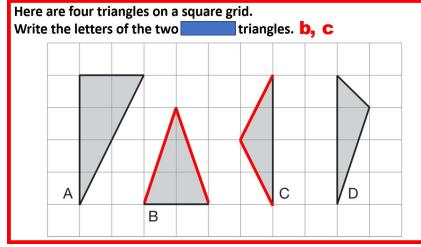

a 2D shape that has been 'stretched out' to make a 3D shape

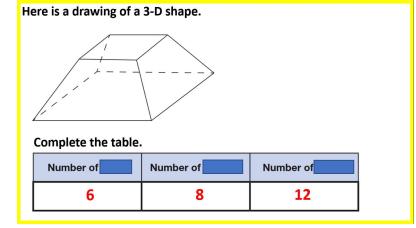

a shape with equal sides and equal angles is _____

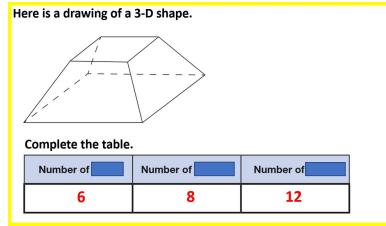

a shape which does not have equal sides and/or equal angles is _____

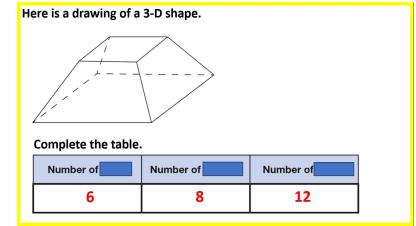

do we write the x or y coordinate first?


when we _____ a shape we move it to a new position (without changing its size or rotating it)


when you have the same reflected on both sides, you have _____

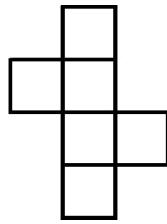

a triangle with sides of the same length and angles of the same size (60 degrees) is called an _____ triangle


a triangle with two sides of the same length and two angles of the same size is called an _____ triangle

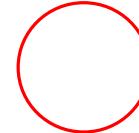

the flat surfaces of a 3D shape are called _____

the 'lines' joining faces of a 3D shape are called _____

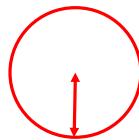
the 'pointy bits' (where edges meet) of a 3D shape are called _____

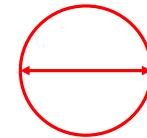

part: part

e.g. a cake is cut into 18 slices. 15 are eaten. 3 are not eaten. The _____ of eaten to uneaten slices is 15:3


e.g. a _____ of 15:3 can be simplified to 5:1

with algebra, $3y$ means 3 _____ y


a 2D representation of the faces of a 3D shape


the perimeter of a circle

the length from the centre to the edge of a circle

a line connecting two points on the edge of a circle which passes through its centre

another word for average is the ____
to find the ____ you add up the numbers and divide by how many numbers there are

Last year, Jacob went to four concerts.

- Three of his tickets cost £5 each. £22 total cost on 4 tickets
- The other ticket cost £7

What was the _____ cost of the tickets? £5.50

$$\begin{array}{r} 5 + 5 + 5 + 7 = £22 \\ \hline 4 | 2 2 0 0 \\ \hline \end{array}$$