

millimetres (mm) in a centimetre (cm)

• 10

centimetres (cm) in a metre (m)

• 100

metres (m) in a kilometre (km)

• 1000

grams (g) in a kilogram (kg)

• 1000

millilitres (ml) in a litre (l)

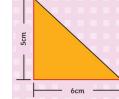
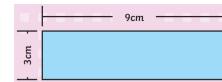
• 1000

1 mile = ___ kilometres

• 1.6

8 kilometres = _ miles

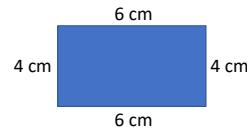
- 5



the amount of 2D space something takes up

e.g. length x width = ____ of a rectangle

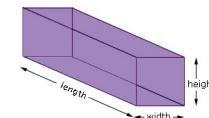
e.g. base x height = ____ of a parallelogram

e.g. base x height $\div 2$ = ____ of a triangle


- area

the distance around the outside

e.g. a rectangle with longer sides of 6 cm and shorter sides of 4 cm will have a _____ of 20 cm


- perimeter

the amount of 3D space something takes up

e.g. length x width x height = _____ of a cuboid

- volume

seconds in a minute

- 60

minutes in an hour

- 60

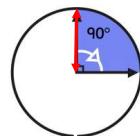
hours in a day

- 24

September, April, June and November have
__ days

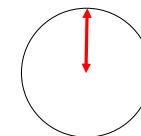
- 30

January, March, May, July, August, October
and December have __ days

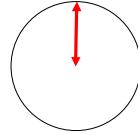

- 31

February has 28 days or 29 in a __ __

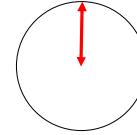
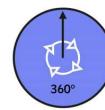
- leap year


degrees in a quarter turn

- 90

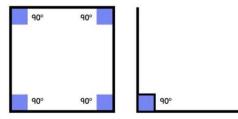

degrees in a half turn

- 180



degrees in three quarters of a turn

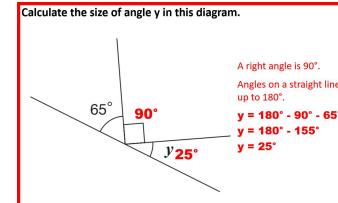
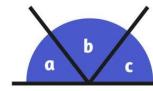
- 270

degrees in a whole turn


- 360

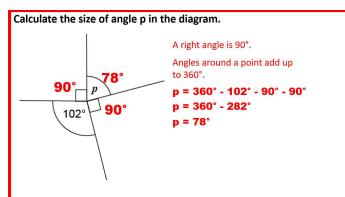
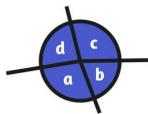
degrees in a right angle

e.g. on angle diagrams, a right angle is shown with a small square

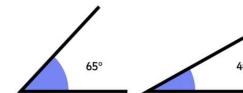


- 90

degrees on a straight line

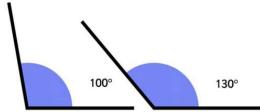
e.g. you can find an unknown angle on a straight line by subtracting the other angle(s) from ____



- 180

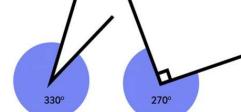
degrees around a point


e.g. you can find an unknown angle on a point by subtracting the other angle(s) from ____

- 360

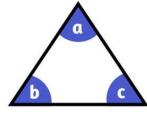

angles less than 90 degrees are ____ angles

- acute


angles greater than 90 degrees but less than 180 degrees are _____ angles

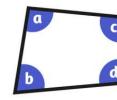
- obtuse

angles greater than 180 degrees are _____ angles

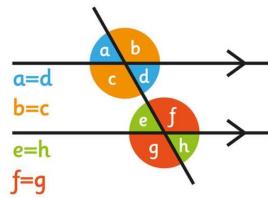

- reflex

angles in a triangle total ____ degrees

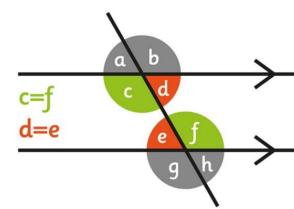
e.g. you can find an unknown angle in a triangle by subtracting the total of the other two angles from ____


- 180

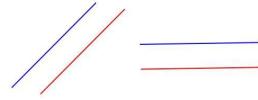
angles in a quadrilateral total ____ degrees


e.g. you can find an unknown angle in a quadrilateral by subtracting the total of the other three angles from ____

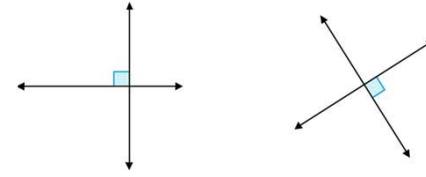
- 360


when two straight lines cross, opposite angles are ____

- equal


on parallel lines, alternate (Z or backwards-Z) angles are ____

- equal


lines would never cross no matter how far we extended them (like train tracks)

- parallel

lines that cross at right angles or would cross at right angles if we extended them

- perpendicular

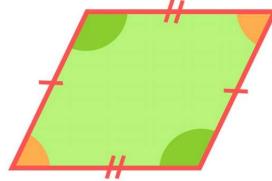
a shape with four sides

- quadrilateral

a shape with five sides

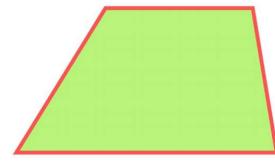
- pentagon

a shape with six sides

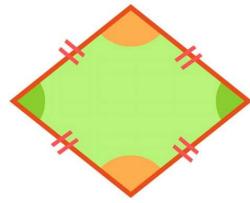

- hexagon

a shape with eight sides

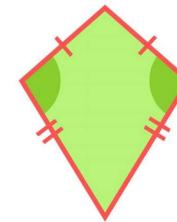
- octagon


a quadrilateral which has two pairs of parallel lines is called a _____

- parallelogram

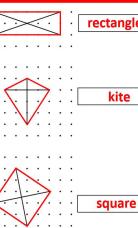

a quadrilateral which has one pair of parallel lines is called a _____

- trapezium


a parallelogram with sides of the same length is called a _____

- rhombus

a quadrilateral with two pairs of equal sides adjacent (next) to each other is called a _____

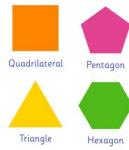

- kite

a line drawn from one vertex to the opposite vertex

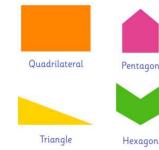
- diagonal

These diagrams show the diagonals of three quadrilaterals.

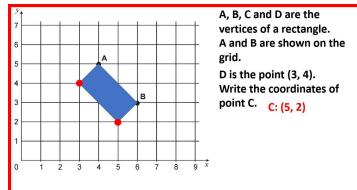
Write the names of the quadrilaterals in the boxes.


a 2D shape that has been 'stretched out' to make a 3D shape

- prism

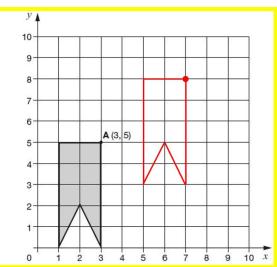

a shape with equal sides and equal angles

- regular


a shape which does not have equal sides and/or equal angles

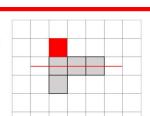
- irregular

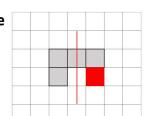
do we write the x or y coordinate first?


- x

when we _____ a shape we move it to a new position (without changing its size or rotating it)

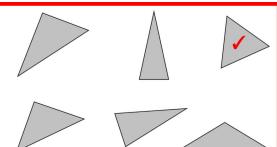
- translate


Here is a shape on a grid. The shape is translated so that point A moves to (7, 8). Draw the shape in its new position.


when you have the same reflected on both sides, you have _____

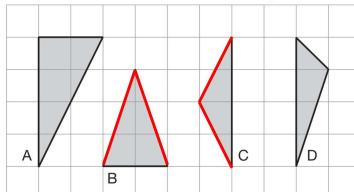
- symmetry

Here is a grid with four squares shaded in. Shade in one more square to make a shape with a line of symmetry.

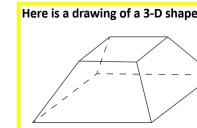

Shade in a different square to make a shape with a line of symmetry.

a triangle with sides of the same length and angles of the same size (60 degrees) is called an _____ triangle

- equilateral


Here are six triangles. One of them is an equilateral triangle. Put a tick in the equilateral triangle.

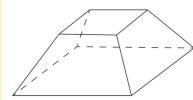
a triangle with two sides of the same length and two angles of the same size is called an _____ triangle


- isosceles

Here are four triangles on a square grid.
Write the letters of the two isosceles triangles. **b, c**

the flat surfaces of a 3D shape are called _____

- faces

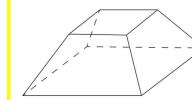

Complete the table.

Number of faces	Number of vertices	Number of edges
6	8	12

the 'lines' joining faces of a 3D shape are called _____

- edges

Here is a drawing of a 3-D shape.


Complete the table.

Number of faces	Number of vertices	Number of edges
6	8	12

the 'pointy bits' (where edges meet) of a 3D shape are called _____

- vertices

Here is a drawing of a 3-D shape.

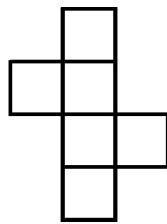
Complete the table.

Number of faces	Number of vertices	Number of edges
6	8	12

part: part

e.g. a cake is cut into 18 slices. 15 are eaten. 3 are not eaten. The _____ of eaten to uneaten slices is 15:3

e.g. a _____ of 15:3 can be simplified to 5:1

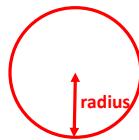

- ratio

with algebra, $3y$ means 3 _____ y

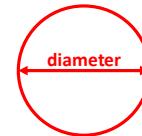
- multiplied by

a 2D representation of the faces of a 3D shape

- net


the perimeter of a circle

- circumference


the length from the centre to the edge of a circle

- radius

a line connecting two points on the edge of a circle which passes through its centre

- diameter

another word for average is the _____

to find the _____, you add up the numbers and divide by how many numbers there are

- mean

Last year, Jacob went to four concerts.

- Three of his tickets cost £5 each. £22 total cost on 4 tickets
- The other ticket cost £7

What was the mean cost of the tickets? £5.50

$$\begin{array}{r}
 5 + 5 + 5 + 7 = £22 \\
 \hline
 4 \mid 22.00 \\
 \hline
 \end{array}
 \quad \begin{array}{r}
 £ 5.50 \\
 \hline
 \end{array}$$